
C2Cfs: A Collective Caching Architecture for
Distributed File Access

Andrey Ermolinskiy
Department of Electrical Engineering and Computer Science

U.C. Berkeley
andreye@cs.berkeley.edu

Renu Tewari
IBM Almaden Research Center

tewarir@us.ibm.com

Abstract—In this paper we present C2Cfs - a decentralized
collective caching architecture for distributed filesystems. C2Cfs
diverges from the traditional client-server model and advocates
decoupling the consistency management role of the central server
from the data serving role. Our design enables multiple client-
side caches to share data and efficiently propagate updates via
direct client-to-client transfers, while maintaining the standard
consistency semantics. We present an NFSv4-based implemen-
tation of our architecture, which works with unmodified NFS
servers and requires no changes to the protocol. Finally, we
evaluate the implementation and demonstrate the performance
benefits of decentralized data access enabled by our approach.

I. I NTRODUCTION

Medium and large commercial enterprises, engineering de-
sign systems, and high performance scientific applications, all
require sharing of massive amounts of data across a wide-area
network in a reliable, efficient, consistent, highly available, and
secure manner. While a data sharing infrastructure that fulfills
all of these objectives remains an elusive, if not altogether
impossible goal, a number of different approaches and designs
have been explored over the years.

At one end of the spectrum, traditional networked filesys-
tems, such as NFS [1] and AFS[2], follow theclient-server
paradigm and enable a collection of clients to access a shared
filesystem exported by a remote server. In this model, the
server plays the role of the authoritative “owner” of the data.

At the other end, we have seen a number of proposals
for fully decentralized distributed filesystems such as xFS[3]
that employ theanything-anywhereprinciple and eliminate
the notion of centralized ownership. Broadly, a serverless
distributed storage architecture requires maintaining a set of
mappings between logical data identifiers (e.g., filenames)and
the locations of their respective owners. These mappings can
either be stored centrally or distributed across the participants.
In the extreme case, fully decentralized P2P storage systems
such as Ivy [4] and OceanStore [5] use the distributed hash
table (DHT) primitive to locate the owner(s) of a given datum
and retain availability in the face of membership churn.

While the pure client-server model is attractive due to its
simplicity, it has several major shortcomings. Fundamentally,
it constrains the movement of data to a star-like topology and
does not take advantage of better inter-client connectivity that
may likely exist. As a result, i) data throughput is limited by
server’s capacity and by the network bandwidth to the server,

ii) clients may observe poor latency in WAN environments
since data is routed triangularly through the server, and iii)
data availability is limited by the connectivity and availability
of the server.

In contrast, the serverless approach exemplified by systems
such as xFS and Ivy helps alleviate the server bottleneck by
distributing data ownership and control, but requires complex
techniques for locating data, managing consistency, and han-
dling failures. Absence of centralized data ownership makes
such systems difficult to administer and deploy in a com-
mercial setting. Furthermore, most of the existing serverless
filesystem protocols are optimized for high-bandwidth LAN
connectivity and are not suited for use over wide-area net-
works. We believe these to be the prime factors that hinder
the adoption of serverless solutions in enterprise settings and
today, NFS, CIFS, and AFS remain the three most widely
deployed protocols for remote file access within an enterprise.

In a widely-distributed setting, both NFS and AFS rely
extensively on client-side caching to (partially) mask the
latency and poor connectivity of WAN links. With caching,
however, comes the fundamental problem of cache consis-
tency. Strong consistency, where every read operation reflects
the most recent write would incur a high performance penalty
and is rarely implemented in practice. Both NFS and AFS
provide a weaker form of cache consistency, calledclose-to-
open consistency, where a client is required to flush all changes
when closing a file and a subsequent client is guaranteed, at
the time of a fileopen request, to see the updates from the
last close request.

In a traditional client-server setting such as NFS, the server
is the authoritative owner of all data and can be viewed
as playing two additional roles, namely: i) servicing data
cache misses and ii) managing the cache consistency state and
driving the cache revalidation and/or invalidation protocols.

In this paper, we argue for a simpledecoupling of roles, i.e.,
the consistency management role of the server from the miss
handling role, within the traditional client-server paradigm.
Such separation enables a new point in the design space of
distributed filesystems, where clients cooperate on servicing
each others’ cache misses and access data via directclient-to-
client transfers that are topologically optimal, thereby reducing
server load and improving response times. At the same time,
our approach does not forfeit the simplicity and practicality of

READ (f, 0, 2)t=10

OPEN (f)t=9

CLOSE (f)t=8

WRITE (f, 1, �Y�)t=7

CLOSE (f)t=6

WRITE (f, 0, �X�)t=5

READ (f, 0, 4096)t=4

READ (f, 0, 4096)t=3

OPEN (f)t=2

OPEN (f)t=1

c
3

c
2

c
1

Fig. 1. Concurrent access to a shared file.

the standard client-server model, allowing the server to remain
the authoritative owner of the data. In enterprise settingsthis
is an important consideration given the need for interfacing
with backup and disaster recovery systems.

We propose C2Cfs- a stackable filesystem layered over NFS
that enables clients to cache file data in a local persistent
store and share it with other client cache proxies. The design
of C2Cfs is guided by the following practical requirements:
i) support well understood consistency semantics ii) use a
standard, open, widely-deployed file access protocol. In order
to make it a practical solution, our design and implementation
rely only on the standard NFS protocol and donot require any
server-side changes.

The benefits of cooperative client-side caching have been
extensively explored in research literature and are well un-
derstood. However, earlier proposals for cooperative caching
in networked filesystems either introduce a new dedicated
protocol, rely on integration with existing DHTs [6], or require
extensions to the NFS protocol [7]. Experience has shown
that open and widely-adopted standards such as NFS are
remarkably resistant to change and as a result, these systems
face a substantial barrier to adoption in an enterprise setting.
Moreover, while most of these designs focus on read-only data,
none of them support a well-defined consistency model for
handling updates.

In contrast, C2Cfs requires no changes to the foundational
file access protocol and can be readily deployed over an
existing storage infrastructure. To the best of our knowledge,
C2Cfs is the first system to provide the benefits of collective
caching while operating within the confines of a standard and
widely-deployed protocol. While our current implementation
is based on NFSv4, it is inherently designed to work with
other file access protocols such as NFSv3, AFS, and CIFS.

In this paper, we highlight our three main contributions.
First, we propose a collective caching architecture that can be
layered on any distributed filesystem supporting close-to-open
consistency. Second, we discuss an NFSv4-based instantiation
of this architecture. Finally, we demonstrate the practicality
and quantitative benefits of our scheme by presenting the
prototype implementation of C2Cfs on Linux.

II. CACHE CONSISTENCYSEMANTICS

A number of design and implementation choices we made
in C2Cfs were driven by our desire to support the traditional
client-serverclose-to-openconsistency semantics.

Under close-to-open consistency, after opening a file a client
is guaranteed to observe all previous updates committed by a
close request. These semantics are fairly easy to achieve in
the conventional client-server architecture. In NFS, clients are
required to perform a writeback and send all modified data to
the server before closing the file. When opening a file, a client
issues agetattr request to retrieve the latest file attributes from
the server, using which it validates the cached version.

The key question that arises in C2Cfs is how to provide
these semantics in a decentralizedclient-to-clientmodel that
does not force clients to send allread requests to the main
server. To illustrate that lack of centralized serialization may
lead to complications, consider the example in Figure 1, in
which three clients (c1, c2, andc3) are accessing a shared file
f of length 4KB that initially resides on the central server.
Observe that theopen request issued byc3 is preceded by
close requests fromc1 and c2, which means thatc3 should
observe the effects of both preceding writes and theread

operation att = 10 should return “XY”. However, at the time
of c3’s open, c1’s local copy off may not necessarily reflect
the update performed byc2 and vice-versa. Hence, a direct
client-to-client transfer fromc1 or c2 would in this scenario fail
to return correct data and some additional coordination must
take place in order to ensure that both updates are reflected in
the version that we make available toc3.

III. C2CfsARCHITECTURE

C2Cfs extends the basic model of a client-server filesystem
in a way that enables a collection of clients to access the
shared filesystem in a consistent and efficient manner without
requiring them to always fetch the data from the server. In
C2Cfs, each client node plays the role of a caching proxy that
stores a subset of the shared files persistently on its local disk.
Furthermore, clients revalidate their cache content usingdirect
client-to-clienttransfers, while retaining some minimal coordi-
nation with the server to guarantee close-to-open consistency.
Figure 2 illustrates the high-level organization of C2Cfs and
lists the key pieces of state.

In C2Cfs, each filef in the shared filesystem is assigned
a globally-unique persistent identifier, denotedf.GlobalF id1.
Locally at each client node, C2Cfs maintains afile identi-
fier map (denotedFidMap) that maps the global persistent
identifier onto a local identifier (f.LocalF id) referring to the
client’s own copy of the file in its local cache. For each
locally-cached file, we also maintain the reverse mapping
〈f.LocalF id → f.GlobalF id〉 as part of per-file metadata.

C2Cfs uses a straightforward timestamp-based scheme to
provide cache consistency guarantees, while supporting direct
cache-to-cache transfers. As the example in Section II demon-
strates, a fully-decentralized model of update propagation may
require clients, in a degenerate case, to track validity andfetch
updates from remote clients at the granularity of individual
bytes - clearly an infeasible requirement. This resulted inour

1In our current NFS-based implementation, the NFS filehandlefrom the
central server plays the role of the global identifier.

…
WAN Server

file1
file2
 …

file1

CVMap = <c1, c3>
Tcommit = 3

file1
 …

file1.GlobalFid

Client c1 FidMap

file2

CVMap = <c2, c3>
Tcommit = 5

…

GlobalFid = …

T local = 3

file1

Fig. 2. Overview of the C2Cfs architecture.

first simplifying design choice:we maintain the cache validity
status at whole-file granularity.

To guarantee close-to-open consistency in C2Cfs, the central
server maintains a per-filecommit timestamp(Tcommit) - a
monotonic counter that is incremented by 1 every time a client
commitsits updates to a file by sending them to the server and
closing the file. The value ofTcommit at the server establishes
the most recent version of the file observed by the server and
a client’s copy off is consideredvalid if its local timestamp
value (f.Tlocal) matches the server’sf.Tcommit.

Finally, for each filef in the filesystem, the server maintains
thecache validity map(f.CV Map) which mapsf.GlobalF id

onto a list of client locations storing valid copies. Observe
that instead of relying on an external DHT-based service for
locating up-to-date replicas, we maintain the list of locations
at a central site and manage it using standard NFS.

At a high level, cache revalidation in C2Cfs proceeds as
follows: When an application issues a fileopen request, the
client first resolves the supplied filename into aGlobalF id
2. (Note that thefilename− to − GlobalF id mapping may
change as result of metadata operations, e.g., file creation,
deletion, and renaming). Next, given a file’s global identifier,
the client reads its currentTcommit and CV Map from the
server. The client then consults itsFidMap and if a copy
exists in the local cache, obtains the correspondingLocalF id

and the local version timestampTlocal. If Tcommit matches
Tlocal, the cached replica of the file is valid. Otherwise, the
client discards the cached version and requests a fresh copy
from the client(s) that hold a valid copy according toCV Map.
As a fallback, if no remote client has the most recent data in
its cache, the client retrieves the file directly from the server.

After obtaining the latest copy of the file and writing it to
the local cache, the client setsf.Tlocal := f.Tcommit, updates
the validity map to reflect the fact that it now holds an up-
to-date copy, and writes the modifiedCV Map to the server.
Once a client’s local copy of the file has been revalidated,
all readsare fulfilled from the local cache, whileupdatesare
written through to the cache and the central server.

When an application at clientc closes a filef , the client
must flush all outstanding updates to the file, increment
f.Tcommit at the server, and determine whether its cached
version is still valid, which would be the case in the absence
of concurrent updates to the same file from other clients. That
is, after closing the file,c’s cached version remains valid if no

2In the current implementation, this is accomplished via an NFS LOOKUP
request to the server, which returns a persistent opaque NFSfilehandle.

other client performed acloseoperation betweenc’s ownclose
and its precedingopen. To make this determination,c stores
the value of server’sf.Tcommit at the time of opening the file
in a local variable (f.Topen). When closing the file,c re-reads
the server’s timestamp and compares it to the original value.
If f.Tcommit = f.Topen then there have been no concurrent
updates andc’s cached version off remains valid. In this
case, the client adds itself to the list of valid cache locations
by setting f.CV Map := {c}. Otherwise, a remote client
must have committed some conflicting updates tof , in which
case none of the clients are guaranteed to have observed all
committed updates and we setf.CV Map := ∅. In both cases,
the client completes the operation by incrementingf.Tcommit

and writing the new timestamp andf.CV Map to the server.
This mechanism enables us to provide the close-to-open

consistency guarantees as defined in Section II. While a formal
proof is beyond the scope of this paper, observe that since all
updates are written through to the server, revalidating a stale
cache entry from the server is always safe. Furthermore, we
can demonstrate using an inductive argument that client-to-
client revalidation is also safe:c revalidatesf from another
client c∗ only if c∗ ∈ f.CV Map, whereasc∗ adds itself to
f.CV Map only after revalidating its own copy to reflect all
preceding committed updates.

In our current design, all metadata operations (e.g., file
creation and deletion) are written through to server and the
corresponding changes are also applied to the local cache.

IV. PROTOTYPE IMPLEMENTATION

In this section we detail our implementation of C2Cfs
on Linux 2.6.21 using NFSv4 as the file access and cache
coordination protocol. Below, we focus our discussion on
the three core components, namely: i) the client-side kernel
module that implements a stackable filesystem layered over
NFSv4 and ext3, ii) the management of server-side state, and
iii) client-to-client data transfer. A more detailed exposition of
the implementation can be found in [8].

A. Client-side Filesystem Layer

We have implemented a C2Cfs prototype on Linux as a
stand-alone loadable kernel module. Our prototype exposes
a new file system type into the Linux VFS layer, providing
the collective caching facility on top of the unmodified NFS
client and a local persistent cache back-end. (In the discussion
that follows, we refer to these underlying filesystem layersas
clientNFSand localFS, respectively). The stackable architec-
ture of C2Cfs ensures that any POSIX filesystem could be
used as the cache backend.

Conceptually, a C2Cfs filesystem on Linux is a collection
of in-memory kernel data structures (super block, inodes,
dentries, andfiles) without a persistent embodiment on the
local disk. These data structures are created dynamically in
response to application requests sent through the VFS layer.

To enable direct client-to-client data transfers, the rootof a
C2Cfs file system is exported via NFS so that the contents of
the local cache are available to remote C2Cfs-capable clients.

It is important to note that we export the root of the C2Cfs file
system rather than the actual on-disk cache (localFS). As we
explain below, this enables us to implement a speciallookup-
by-filehandle-as-nameprocedure that permits the local client
to retrieve data from remote peers efficiently via itsGlobalF id

(the primary server’s NFS filehandle).
The FidMap maintains mappings from a file’s primary

NFS filehandle to an identifier in localFS. A file in the
local cache is typically identified by the deviceid, the inode
number, and the inode generation number. To ensure compati-
bility across various filesystem types, we obtain theLocalF id

using the kernel’sexportfsfacility, which constructs an opaque
identifier from a given localFS dentry by invoking a filesystem-
specific callback. Currently, our implementation maintains the
FidMap in a simple in-memory hash table, backed by a
hidden file in localFS.

C2Cfs also maintains a small amount of per-file metadata,
in localFS. which includes the local commit timestampTlocal

and itsGlobalF id. Our current implementation maintains this
state in an extended file attribute.

B. Server-side State

For each file in the shared filesystem, the server maintains
the current commit timestampTcommit (a 32-bit integer) and
the cache validity map. Currently, theCV Map is represented
by a bitmap with 1 bit per client indicating whether the
respective client caches the last committed version of the file.

Since our design requirements dictate an unmodified server,
clients are responsible for creating, updating, and deleting
these objects. Hence, the client that first creates a file will
also create and initialize the associatedTcommit andCV Map

data structures at the server.
The per-file metadata at the server could be stored as an

extended attribute along with the file, but we found that
the Linux 2.6.21 implementation of the NFSv4 server only
supports ACLs and not general extended attributes. Hence,
our current implementation keeps the metadata in a separate
file much like a named attribute. The file is stored in a hidden
well-known directory with the name of the file being the string
representation of itsGlobalF id.

C. Client-to-client Data Movement

To revalidate a cached copy of a filef , a client retrieves
f.Tcommit and f.CV Map from the server. It consults the
validity map to determine the list of peer locations from which
a valid copy off can be fetched.

Client-client mount: The CV Map may only represent a
numerical client identifierclient id, in which case we need
an external means of resolvingclient id into 〈hostname :

export path〉 and currently, we maintain these mappings in
a static configuration file. Given a peer client’s hostname and
export path, the client mounts its C2Cfs export over NFS. The
mounting is done on demand, as we do not want all clients to
be mounting from all their peers.

Lookup using filehandle as name: To fetch an up-to-date
version of a filef from a remote peer, the client must perform

a lookup over NFS and obtain the corresponding filehandle
from the peer. Instead of issuing a lookup requests on the
filename of f , the client requests a lookup on the string
representation off.GlobalF id. This unusual lookup technique
serves two important purposes: i) avoiding the overhead of a
multi-stage pathname lookup, ii) avoiding ambiguities dueto
a rename of any component in the path leading to the file or
a rename of the file itself (the filehandle is guaranteed to be
persistent and unique).

The lookup from a remote peer proceeds as follows: i)
The client issues a lookup request forf.GlobalF id with an
intent to open, which results in an NFSopen request with
the namef.GlobalF id to the peer client. ii) When the peer
client receives anopenrequest, the NFS server daemon issues
a VFS lookup with an intent to open to the C2Cfs layer. iii)
The C2Cfs layer detects that this is a lookup byfilehandle as
a nameand consults theFidMap to obtainf.LocalF id. iv)
Using the kernel’sexportfsinterface, it convertsf.LocalF id

to a dentry in its localFS and the dentry is used to obtain an
open file pointer to the local copy off .

V. EXPERIMENTAL EVALUATION

Due to space constraints, we present only key evaluation
results that quantitatively demonstrate the performance ben-
efits of decentralized update propagation and the feasibility
of our design. Several additional important measurements are
reported in [8].

The experiments were conducted in a controlled test envi-
ronment consisting of 5 server-grade x86 machines running
Linux 2.6.21, 3.2GHz, 2GB memory, 72 GB storage, inter-
connected via a 100Mbps switched Ethernet. Four of these
machines were assigned clients running C2Cfs and the fifth
machine played the role of the central server holding the
master replica of the filesystem and exporting it to clients
via NFSv4. Each of the four clients was configured to use a
local cache hosted on an ext3 partition large enough to store
a complete replica of the shared filesystem.

In the following experiments, we compare C2Cfs, in which
we point the benchmark application to the C2Cfs filesystem
root, and the baseline scenario, in which client applications
are configured to access the shared filesystem directly from
the server via the NFS mount point. Unless stated otherwise,
all NFS read/write requests are sent on the wire in 32KB
chunks and application I/O request size is 256KB.

A. Server Load Reduction

One of the benefits of sharing data across caches is that
the server will receive fewer requests and can scale to support
more clients. We measure the server load reduction using two
metrics: i) the number of NFS operations received at the server,
and ii) the bytes transferred to and from the server.

In the first experiment, we measure sequential read access
to a file whose size ranges between 100KB and 100MB. Each
client opens and reads the entire file, and then closes it. The
reads are staggered among the clients with a 30-second delay.

 100

 1000

 10000

 100000

 1e+06

 1 2 3 4N
et

w
or

k
ba

nd
w

id
th

 u
sa

ge
 (

K
B

 s
en

t+
re

ce
iv

ed
)

Clients

Base, 100MB
C2C, 100MB
Base, 10MB
C2C, 10MB
Base, 1MB
C2C, 1MB

Base, 100KB
C2C, 100KB

Fig. 3. Overhead at the primary NFS server in the synthetic read
experiment. The X-axis shows the number of clients doing a staggered
read. The y-axis (in log scale) shows the number of NFS operations and
the total bytes sent and received by the server.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 20 40 60 80 100 120

N
F

S
 O

pe
ra

tio
ns

Time (seconds)

Base, primary server
C2C, primary server

C2C, client 1
C2C, client 2
C2C, client 3
C2C, client 4

Fig. 4. Distribution of reads across clients in the synthetic read
experiment. The x-axis shows time in seconds (client requests are
staggered by 30 seconds). The y-axis shows the cumulative number of
NFS operations at the server and each of the clients.

In the baseline case, every client reads the file from the
server and thus, the number of NFS operations at the server
grows linearly with the number of clients, as reported in [8].
With our scheme, only the first clients reads the data from the
server. The second client fetches it from the first client after
getting the cache map from the server. Similarly, the third
client reads from both the first and the second clients and so
on. Hence, the number of requests observed by the server with
C2Cfs remain nearly constant, as only the first client fetches
the file directly from the server. Note, however, that this istrue
only for files larger than 1MB because we pay an additional
overhead to OPEN, LOCK, READ/WRITE, UNLOCK, and
CLOSE the file holding the C2Cfs metadata.

Figure 3 measures the amount of data transferred to/from the
server. The amount of traffic grows linearly with the number
of clients in the baseline case, but stays nearly flat when
collective caching is enabled. With 4 clients, C2Cfs reduces
server’s network bandwidth usage by 75% for a 100MB file.
In [8], we analyze the behavior further and consider the
breakdown of NFS operations in this experiment.

Figure 4 shows a time-series plot illustrating the distribution
of NFS requests across the clients and the central server. Inthe
baseline case, the number of requests at the server increases
linearly with the number of clients. With collective caching,
the first client starts at time 0 and all its requests are sent to
the server. After a 30-second delay, client 2 starts and reads
the data from client 1 and the server sees only a marginal
increase in the number of requests. After another 30-second
delay, client 3 accesses the file and fetches the data from
clients 1 and 2, and so on.

Workload Seq. read Seq. read+write
Base C2C Base C2C

Client 1 23.7 24.3 197.4 198.8
Client 2 23.5 10.3 198.0 194.7

TABLE I
Application response time (seconds) for reading a 100-MB file.

B. Application Response Time

Masking WAN latency: In a typical enterprise with a
central-office branch-office setting, the server can be across a
WAN, while multiple peer clients in a branch office are in close
proximity to each other and have a better connectivity among
themselves than with the remote server. In this experiment,
we measure application response time in a scenario where
the server is separated from clients by a wide-area link.
We demonstrate that our architecture can help mask WAN
latencies and improve application performance. To simulate
the link latency, we use the standard Linuxtc packet filter and
configure it to impose a mean latency of 100 ms (which is
what we had observed as the round-trip-time between servers
in California and New York). We measure the application
response time for two synthetic workloads (sequential readand
sequential read/write) on a single file of size 100MB from 4
clients and Table I reports the response time for both schemes.
For sequential read access, C2Cfs incurs a 2.5% overhead for
the first client, but reduces the response time by 50% for the
second client and for all clients that follow. In the sequential
read/write experiment, the response time is dominated by the
writes to the server and thus the two schemes exhibit similar
performance.

Overloaded server: The application response time is also
affected by the load on the server and the next experiment
demonstrates the performance benefits of decentralized cache
revalidation of C2Cfs in case of an overloaded primary server.
In this two-stage experiment, two distinct files, each of size
1GB, are read sequentially by four clients. In the first stage,
clients 1 and 2 readfileA and fileB, respectively. Since both
reads are handled by the central server, each client receives
approximately 1/2 of the available server-side bandwidth.In
both schemes, all the requests go to the server and thus, we
observe similar performance. In the second stage, clients 3and
4 perform concurrent reads onfileA andfileB, respectively. In
the baseline scenario, these reads are handled by the server
as well and hence observe similar performance as the first
two clients. By contrast, with C2Cfs clients 3 and 4 can fetch
the file directly from clients 1 and 2 and avoid overloading
the server. With our architecture, these clients observe a 47%
reduction in response time compared to the baseline case. The
complete set of measurements is reported in [8].

C. Evaluation with Realistic Application Workloads

In the above experiments, we used synthetic workloads to
evaluate C2Cfs in a controlled setting. We also used Filebench
[9] - a soon-to-be-standard filesystem benchmark filesystems -
to study the performace under realistic application workloads.

In the first experiment, we configure Filebench with a Web
server workload. We first generate a directory tree containing

File size Baseline C2C overhead (%)
1 MB 0.094 sec. 0.117 sec. 24.5%
10 MB 0.897 sec. 0.923 sec. 2.9%
100 MB 8.937 sec. 8.978 sec. 0.5%

TABLE II
Latency overhead for a single-client sequential read.

5000 files with a mean file size of 100KB. The workload
consists of 5000 file accesses (open, sequential read, close)
with a Zipfian popularity distribution. Additionally, a 16-KB
block is appended to a simulated log for every 10 reads. We
run the workload on each of the four clients and measure the
total network bandwidth consumption at the server (bytes sent
and received). Each client starts out with an empty cache and
begins when the previous client has completed. Each client
reads 5000 randomly-chosen files (different clients may choose
different files). In the baseline case, all requests go to themain
server, whereas with C2Cfs, client 2 redirects a fraction ofits
requests to client 1; client 3 redirects to 1 and 2, and so on.
For the first client, the baseline scheme produces 169MB of
traffic at the server, compared to 189MB produced with C2Cfs.
For each subsequent client, however, our design reduces the
network bandwidth usage at the server to 19MB. Full results
from this and other experiments can be found in [8].

D. Overhead of C2Cfs

Clearly, for a single-client access with no sharing across
clients, C2Cfs provides no benefit and imposes some addi-
tional overhead, which includes: i) The space overhead of
storing the per-file metadata〈Tcommit, CV Map〉 at the server.
Our current implementation adds 8 bytes of per-file state -
a negligible overhead for all but very small files. ii) The
server load overhead due to the additional operations done
at the server for cache revalidation. Here, we also pay a non-
negligible penalty for small files [8]. iii) The latency overhead
incurred by the revalidation protocol due to the additionaltime
taken to access the C2Cfs metadata at the server.

To quantify the latency overhead, we measure the response
time seen by a single client that sequentially reads a file
residing at the central server. The server is across a 100Mbps
LAN connection with no simulated delay. Table II reports the
client-observed response time. As expected the overhead falls
from 24% for the 1MB file to 0.5% for a 100MB file. While
clearly non-trivial, in scenarios with large files and multiple
clients that were examined above, this overhead is masked by
the benefits of a collective consistent cache.

VI. RELATED WORK

NFS [1] and AFS [2], [10] are among the most widely-
used distributed networked filesystems. Coda [11] extends the
core architecture of AFS to support server replication and
disconnected mode of operation. As with most “pure” client-
server architectures, the flow of data and cache invalidation
requests in these systems is constrained to a star topology with
very little direct inter-client coordination. While in this paper,
our implementation was presented in the context of NFSv4,
the C2Cfs architecture can leverage any client-server protocol

that supports: i) close-to-open consistency, ii) persistent unique
file identifiers, iii) file locking or atomic creates.

The advent of P2P file sharing ([12], [13]) and the immense
research interest in DHT-based content location techniques
have led some to propose a fully-decentralized, serverless
architecture as a viable architectural model for general-purpose
filesystems. CFS [14] is a peer-to-peer read-only filesystem
that provides provable efficiency and load-balancing guaran-
tees. Internally, CFS uses a DHT-based block storage layer
based on Chord [15] to distribute filesystem blocks over a set
of storage servers. The Ivy architecture [4] is a read-writeP2P
filesystem that provides NFS semantics and strong integrity
properties without requiring users to fully trust other users
of the filesystem. Ivy relies on cryptographic techniques to
protect the data and hence incurs a substantial performance
penalty. In contrast, application performance representsthe
primary focus of our work. The PRACTI replication frame-
work [16] illustrates the benefits of separating the flow of
cache invalidation traffic from that of data itself and C2Cfs
demonstrates how such separation can be realized within the
confines of NFS. The Shark cooperative file cache architecture
[6] has similar goals as C2Cfs. However, it does not provide
close-to-open consistency guarantees and does not supportan
unmodified NFS server and protocol - an important consider-
ation for commercial deployments.

REFERENCES

[1] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame,
M. Eisler, and D. Noveck, “NFS version 4 Protocol,” RFC 3530.
[Online]. Available: http://www.ietf.org/rfc/rfc3530.txt

[2] J. Howard and et al., “An overview of the Andrew filesystem,” in Usenix
Winter Techinal Conference, 1988.

[3] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli, and R. Wang,
“Serverless Network File Systems,” inSOSP 1995.

[4] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen, “Ivy: A
read/write peer-to-peer file system,” inSOSP 2002.

[5] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, C. Wells, and B. Zhao,
“Oceanstore: an architecture for global-scale persistentstorage,” in
ASPLOS-IX, 2000.

[6] S. Annapureddy, M. J. Freedman, and D. Mazires, “Shark: Scaling file
servers via cooperative caching,” inNSDI 2005.

[7] Y. Xu and B. D. Fleisch, “NFS-cc; tuning NFS for concurrent read
sharing,” Int. J. High Perform. Comput. Netw., vol. 1, no. 4.

[8] A. Ermolinskiy and R. Tewari, “C2Cfs: A collective caching architecture
for distributed file access,”UC Berkeley Technical Report UCB/EECS-
2009-40.

[9] R. McDougall, J. Crase, and S. Debnath, “FileBench:
File System Microbenchmarks,” 2006. [Online]. Available:
http://www.opensolaris.org/os/community/performance/filebench/

[10] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satya-
narayanan, R. N. Sidebotham, and M. J. West, “Scale and performance
in a distributed file system,”ACM Trans. Comput. Syst., vol. 6, no. 1.

[11] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H. Siegel,
and D. C. Steere, “Coda: A highly available file system for a distributed
workstation environment,”IEEE Trans. Comp., vol. 39, no. 4.

[12] “Bittorrent,” http://www.bittorrent.com.
[13] “Kazaa,” http://www.kazaa.com.
[14] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, “Wide-

area cooperative storage with CFS,” inSOSP 2001.
[15] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,

“Chord: A scalable peer-to-peer lookup service for internet applications,”
in SIGCOMM 2001.

[16] N. Belaramani, M. Dahlin, L. Gao, A. Nayate, A. Venkataramani,
P. Yalagandula, and J. Zheng, “PRACTI replication,” inNSDI 2006.

