C2Cfs: A Collective Caching Architecture for
Distributed File Access

Andrey Ermolinskiy Renu Tewari
Department of Electrical Engineering and Computer Science IBM Almaden Research Center
U.C. Berkeley tewarir@us.ibm.com

andreye@cs.berkeley.edu

Abstract—In this paper we present C2Cfs - a decentralized ii) clients may observe poor latency in WAN environments
collective caching architecture for distributed filesystens. C2Cfs since data is routed triangularly through the server, aid ii

diverges from the traditional client-server model and advaates data availability is limited by the connectivity and availity
decoupling the consistency management role of the centraésrer of the server

from the data serving role. Our design enables multiple cliat- .
side caches to share data and efficiently propagate updatesav IN contrast, the serverless approach exemplified by systems
direct client-to-client transfers, while maintaining the standard such as XFS and Ivy helps alleviate the server bottleneck by

consistency semantics. We present an NFSv4-based implemendistributing data ownership and control, but requires clemp
tation of our architecture, which works with unmodified NFS techniques for locating data, managing consistency, and ha

servers and requires no changes to the protocol. Finally, we dlina fail Ab f tralized dat hi K
evaluate the implementation and demonstrate the performage 9'INY faliures. Absence or centralized data oOwnersnip raake

benefits of decentralized data access enabled by our apprdac SuUch systems difficult to administer and deploy in a com-
mercial setting. Furthermore, most of the existing seesl
. INTRODUCTION filesystem protocols are optimized for high-bandwidth LAN

Medium and large commercial enterprises, engineering dmnnectivity and are not suited for use over wide-area net-
sign systems, and high performance scientific applicatialhs works. We believe these to be the prime factors that hinder
require sharing of massive amounts of data across a wide-afee adoption of serverless solutions in enterprise settargl
network in a reliable, efficient, consistent, highly avbitg and today, NFS, CIFS, and AFS remain the three most widely
secure manner. While a data sharing infrastructure thilisul deployed protocols for remote file access within an entsepri
all of these objectives remains an elusive, if not altogethe In a widely-distributed setting, both NFS and AFS rely
impossible goal, a number of different approaches and dssigxtensively on client-side caching to (partially) mask the
have been explored over the years. latency and poor connectivity of WAN links. With caching,

At one end of the spectrum, traditional networked filesystowever, comes the fundamental problem of cache consis-
tems, such as NFS [1] and AFS[2], follow tlodient-server tency. Strong consistency, where every read operatiorctefle
paradigm and enable a collection of clients to access a dhattee most recent write would incur a high performance penalty
filesystem exported by a remote server. In this model, tlamd is rarely implemented in practice. Both NFS and AFS
server plays the role of the authoritative “owner” of theadat provide a weaker form of cache consistency, caliezse-to-

At the other end, we have seen a number of proposalsen consistengwhere a client is required to flush all changes
for fully decentralized distributed filesystems such as ¥8}]S when closing a file and a subsequent client is guaranteed, at
that employ theanything-anywhererinciple and eliminate the time of a fileopen request, to see the updates from the
the notion of centralized ownership. Broadly, a serverlessst close request.
distributed storage architecture requires maintainingtao$ In a traditional client-server setting such as NFS, theeserv
mappings between logical data identifiers (e.g., filenaraed) is the authoritative owner of all data and can be viewed
the locations of their respective owners. These mappings G playing two additional roles, namely: i) servicing data
either be stored centrally or distributed across the ppeits. cache misses and ii) managing the cache consistency sthte an
In the extreme case, fully decentralized P2P storage sgstesniving the cache revalidation and/or invalidation pratisc
such as Ivy [4] and OceanStore [5] use the distributed hashin this paper, we argue for a simpdecoupling of rolesi.e.,
table (DHT) primitive to locate the owner(s) of a given daturthe consistency management role of the server from the miss
and retain availability in the face of membership churn. handling role, within the traditional client-server paigad.

While the pure client-server model is attractive due to itSuch separation enables a new point in the design space of
simplicity, it has several major shortcomings. Fundamlgnta distributed filesystems, where clients cooperate on segyic
it constrains the movement of data to a star-like topology arach others’ cache misses and access data via dliect-to-
does not take advantage of better inter-client connegtitiait clienttransfers that are topologically optimal, thereby redgcin
may likely exist. As a result, i) data throughput is limiteg b server load and improving response times. At the same time,
server's capacity and by the network bandwidth to the serveur approach does not forfeit the simplicity and practtgadif

o G G Under close-to-open consistency, after opening a file atclie
t=1 | OPEN (f) is guaranteed to observe all previous updates committed by a

=2 OPEN (f) close request. These semantics are fairly easy to achieve in
=3 | READ (£, 0, 4096) the conventional client-server architecture. In NFS,ntieare
=4 READ (f, 0, 4096)

required to perform a writeback and send all modified data to
the server before closing the file. When opening a file, a tlien
issues getattr request to retrieve the latest file attributes from

=5 | WRITE (£, 0, “X”)
=6 | CLOSE ()

:;; ZVLR(;EE g) L the server, using which it validates the cached version.

=9 OPEN (f) The key question that arises in C2Cfs is how to provide

t=10 READ (£, 0, 2) these semantics in a decentralizgiggnt-to-clientmodel that
Fig. 1. Concurrent access to a shared file. does not force clients to send altad requests to the main

the standard client-server model, allowing the servertoaig SErver. To illustrate that lack of centralized serialiaatmay
the authoritative owner of the data. In enterprise settihgs lead to complications, consider the example in Figure 1, in
is an important consideration given the need for interfgcivhich three clients(, c,, andc;) are accessing a shared file
with backup and disaster recovery systems. f of length 4KB that initially resides on the central server.
We propose C2Cfs- a stackable filesystem layered over NPgserve that thepen request issued bys is preceded by
that enables clients to cache file data in a local persistshese requests fronr; andcz, which means that; should
store and share it with other client cache proxies. The desigbserve the effects of both preceding writes and thed
of C2Cfs is guided by the following practical requirement$Peration at = 10 should return “XY”. However, at the time
i) support well understood consistency semantics ii) useC4cs’s open, c1's local copy of f may not necessarily reflect
standard, open, widely-deployed file access protocol. tielor the update performed by, and vice-versa. Hence, a direct
to make it a practical solution, our design and implemeatati client-to-client transfer from; or c; would in this scenario fail
rely only on the standard NFS protocol andmizt require any t0 return correct data and some additional coordinationtmus
server-side changes. take place in order to ensure that both updates are reflatted i
The benefits of cooperative client-side caching have beBl¢ version that we make available dg.
extensively explored in research literature and are well un
derstood. However, earlier proposals for cooperative iogch
in networked filesystems either introduce a new dedicatedC2Cfs extends the basic model of a client-server filesystem
protocol, rely on integration with existing DHTs [6], or néice in a way that enables a collection of clients to access the
extensions to the NFS protocol [7]. Experience has showhared filesystem in a consistent and efficient manner withou
that open and widely-adopted standards such as NFS msguiring them to always fetch the data from the server. In
remarkably resistant to change and as a result, these sy/st@RCfs, each client node plays the role of a caching proxy that
face a substantial barrier to adoption in an enterpriséngett stores a subset of the shared files persistently on its lésial d
Moreover, while most of these designs focus on read-only,dafFurthermore, clients revalidate their cache content udiregt
none of them support a well-defined consistency model felient-to-clienttransfers, while retaining some minimal coordi-
handling updates. nation with the server to guarantee close-to-open comsigte
In contrast, C2Cfs requires no changes to the foundatiomgure 2 illustrates the high-level organization of C2Cfgla
file access protocol and can be readily deployed over Rgts the key pieces of state.
existing storage infrastructure. To the best of our knogéed |n C2Cfs, each filef in the shared filesystem is assigned
C2Cfs is the first system to provide the benefits of collectivg globally-unique persistent identifier, denotedlobal Fid®.
caching while operating within the confines of a standard an@cally at each client node, C2Cfs maintainsfile identi-
widely-deployed protocol. While our current implementati fier map (denotedFidMap) that maps the global persistent
is based on NFSv4, it is inherently designed to work witliientifier onto a local identifier { Local Fid) referring to the
other file access protocols such as NFSv3, AFS, and CIF&lient's own copy of the file in its local cache. For each
In this paper, we highlight our three main contributiongocally-cached file, we also maintain the reverse mapping
First, we propose a collective caching architecture that® (f.Local Fid — f.Global Fid) as part of per-file metadata.
layered on any distributed filesystem supporting closegilen C2Cfs uses a straightforward timestamp-based scheme to
consistency. Second, we discuss an NFSv4-based insizalmtiaprovide cache consistency guarantees, while supportiegtdi
of this architecture. Finally, we demonstrate the pratitica cache-to-cache transfers. As the example in Section Il demo
and quantitative benefits of our scheme by presenting tsgates, a fully-decentralized model of update propagatiay
prototype implementation of C2Cfs on Linux. require clients, in a degenerate case, to track validityfatuh
updates from remote clients at the granularity of individua
tes - clearly an infeasible requirement. This resultedun

Ill. C2CfSARCHITECTURE

II. CACHE CONSISTENCYSEMANTICS

A number of design and implementation choices we ma(?g
'n. C2Cfs were driven by our Qeswe to suppo_rt the tradlUonallln our current NFS-based implementation, the NFS filehafidim the
client-serverclose-to-operconsistency semantics. central server plays the role of the global identifier.

Client ¢,

other client performed eloseoperation betweeds own close

l__FidMap\ _filel_))) -)
—r= and its preceding@pen To make this determination, stores
filel.GlobalFid | *— filel CVMap = <cy, > , : H 1
the value of server's.T.,..m:: at the time of opening the file
file1 _ in a local variable {.Top.). When closing the file¢ re-reads
_—M2..__ the server's timestamp and compares it to the original value
GlobalFid = ... -
o If f.Teommit = f-Topen then there have been no concurrent

updates and’s cached version off remains valid. In this
Fig. 2. Overview of the C2Cfs architecture. case, the client adds itself to the list of valid cache laoei
by setting f.CVMap := {c}. Otherwise, a remote client
first simplifying design choiceve maintain the cache validity Must have committed some conflicting updateg tan which
status at whole-file granularity case none of the clients are guaranteed to have observed all
To guarantee close-to-open consistency in C2Cfs, thealenffommitted updates and we seCV Map := 0. In both cases,
server maintains a per-fileommit timestamfTLomm::) - a € client completes the operation by incrementiig.o, mit
monotonic counter that is incremented by 1 every time a tliednd Writing the new timestamp aniC'V' Map to the server.
commitsits updates to a file by sending them to the server and ThiS mechanism enables us to provide the close-to-open
closing the file. The value GF,mmi: at the server estabnshesconss_tency guarantees as deflr!ed in Section Il. While afafbrm
the most recent version of the file observed by the server af@Of is beyond the scope of this paper, observe that sirce al
a client's copy off is consideredvalid if its local timestamp updates are written through to the server, revalidatingake st
value (f.Tjoe) Matches the serversT, y cache entry from the server is always safe. Furthermore, we
. oca commat-
Finally, for each filef in the filesystem, the server maintain£@n demonstrate using an inductive argument that client-to
the cache validity mag f.C'V Map) which mapsf.Global Fid client revalidation is also safe; revalidatesf from another
onto a list of client locations storing valid copies. Obgen/client ¢™ only if ¢* € f.CV Map, whereasc” adds itself to
that instead of relying on an external DHT-based service f6rCY Map only after revalidating its own copy to reflect all
locating up-to-date replicas, we maintain the list of lomag Preceding committed updates. , ,
at a central site and manage it using standard NFS. In our current design, all metadata operations (e.g., file
At a high level, cache revalidation in C2Cfs proceeds Seation and deletion) are written through to server and the
follows: When an application issues a fitgen request, the corresponding changes are also applied to the local cache.
client first resolves the supplied filename intoGaobal F'id
2, (Note that thefilename — to — Global Fid mapping may) i _ _ _
In this section we detail our implementation of C2Cfs

change as result of metadata operations, e.g., file creation” X)
deletion, and renaming). Next, given a file's global ideetifi on Linux 2.6.21 using NFSv4 as the file access and cache

the client reads its Curren,q,m:; and CV Map from the coordination protocol. Below, we foc.us our _discu_ssion on
server. The client then consults ifSidMap and if a copy the three core components, namely: |)_ the client-side kerne
exists in the local cache, obtains the correspondingul Fid module that |mpI§_ments a stackable fllesystem_layered over
and the local version timestaniBocar. If Toommiz Matches _NFSy4 and e_xt3, i) the management of ser_ver-5|d_e_ state, and
Tiocal, the cached replica of the file is valid. Otherwise, thid) C_Ilent-to-cllen_t data transfer. A more detailed expims of
client discards the cached version and requests a fresh cHjfy implementation can be found in [8].

from the client(s) that hold a valid copy accordingi® Map. A Client-side Filesystem Layer

As a fallback, if no remote client has the most recent data in . .
We have implemented a C2Cfs prototype on Linux as a

its cache, the client retrieves the file directly from theveer tand-al loadable k | Jule. O o
After obtaining the latest copy of the file and writing it toorand-aione loadable kermnel module. Lur prototype exposes

the local cache, the client SefsTiea = . Toommst, Updates a new file_system _type in_t_o the Linux VFS layer, _p_roviding
the validity map to reflect the fact that it now holds an u t_h.e collective cachmg.facmty on top of the uandIer.(.JI NFS
to-date copy, and writes the modifi€l’ Map to the server. client and a local persistent cache bac.k—en_d. (In the dssmais
Once a client’s local copy of the file has been revalidateﬁ1at follows, we refer to these underlying filesystem layass

all readsare fulfilled from the local cache, whilepdatesare clientNFSand localFS respectively). The stackable architec-
written through to the cache and the cen’tral server. ture of C2Cfs ensures that any POSIX filesystem could be

When an application at client closes a filef, the client usgd as tr;e (I:IaCher;é?erf'.?' " Li . llecti
must flush all outstanding updates to the file, incremen(ﬁ onceptually, a s fiesystem on Linuxis a cofiection

[Toomma at the server, and determine whether its cach&) In-memory kernel data structuresufper_block, inodes,

version is still valid, which would be the case in the absenfgnmes' and files) without a persistent embodiment on the

of concurrent updates to the same file from other clientst T 8cal d'Sk't Thesf. d?ta structurtes are: tclf]reateg t?]yn\zirﬁlsmlally !
is, after closing the fileg's cached version remains valid if no'€SPoNse 1o application requests sent through the - layer
To enable direct client-to-client data transfers, the afod

2|n the current implementation, this is accomplished via &#SN.OOKUP C2Cfs file system Is exported via NFS so that the Conten_ts of
request to the server, which returns a persistent opaquefikffgndle. the local cache are available to remote C2Cfs-capabletslien

IV. PROTOTYPEIMPLEMENTATION

It is important to note that we export the root of the C2Cfs fila lookup over NFS and obtain the corresponding filehandle
system rather than the actual on-disk cache (localFS). As fwem the peer. Instead of issuing a lookup requests on the
explain below, this enables us to implement a spdoiakup- filename of f, the client requests a lookup on the string
by-filehandle-as-namprocedure that permits the local clientrepresentation of.Global Fiid. This unusual lookup technique
to retrieve data from remote peers efficiently viaGt®bal F'id serves two important purposes: i) avoiding the overhead of a
(the primary server's NFS filehandle). multi-stage pathname lookup, ii) avoiding ambiguities doie
The FidMap maintains mappings from a file’s primarya rename of any component in the path leading to the file or
NFS filehandle to an identifier in localFS. A file in thea rename of the file itself (the filehandle is guaranteed to be
local cache is typically identified by the devigd, the inode persistent and unique).
number, and the inode generation number. To ensure compatifhe lookup from a remote peer proceeds as follows: i)
bility across various filesystem types, we obtain thealFid The client issues a lookup request fbiGlobal Fid with an
using the kernel'@xportfsfacility, which constructs an opaqueintent to open, which results in an NR$enrequest with
identifier from a given localFS dentry by invoking a filesyate the namef.Global Fid to the peer client. ii) When the peer
specific callback. Currently, our implementation maingatine client receives ampenrequest, the NFS server daemon issues
FidMap in a simple in-memory hash table, backed by a VFS lookup with an intent to open to the C2Cfs layer. iii)
hidden file in localFS. The C2Cfs layer detects that this is a lookupflighandle as
C2Cfs also maintains a small amount of per-file metadata,nameand consults thé'idMap to obtain f.Local Fid. iv)
in localFS. which includes the local commit timestaffip.,; Using the kernel'sxportfsinterface, it converty.Local F'id
and itsGlobal F'id. Our current implementation maintains thigo a dentry in its localFS and the dentry is used to obtain an
state in an extended file attribute. open file pointer to the local copy of.

B. Server-side State V. EXPERIMENTAL EVALUATION
For each file in the shared filesystem, the server maintain

the current commit tmestanmpeommis @ 32_b.lt integer) and results that quantitatively demonstrate the performarere b
the cache validity map. Currently, tlieV M ap is represented . : L
efits of decentralized update propagation and the feagibili

by a b!tmap with 1 bit per client mcﬁcatmg vyhether th(.aof our design. Several additional important measuremenets a
respective client caches the last committed version of the fi

. : . . " relported in [8].

Since our design requirements dictate an unmodified serve Th . ¢ ducted i trolled test .

clients are responsible for creating, updating, and dwejeti € expenments were conducted In a controlied test envi-
fgnment consisting of 5 server-grade x86 machines running

these objects. Hence, the client that first creates a file \/\1_ .
P . inux 2.6.21, 3.2GHz, 2GB memory, 72 GB storage, inter-
I t d initialize th ated,,mi: andCV M . .
aiso create and INMalize e assocl v andC'VMap connected via a 100Mbps switched Ethernet. Four of these

data structures at the server. chines were assigned clients running C2Cfs and the fifth
The per-file metadata at the server could be stored as MRcN! W '9 ! unning :

extended attribute along with the file, but we found tha{PaChine pIr_:Iyed the rqle of the central Server -hoIding the

the Linux 2.6.21 implementation of the NFSv4 server onl _aster replica of the fllesystem and exportl_ng it to clients

supports ACLs and not general extended attributes. Hen & NFSv4. Each of the four cllents_ was configured to use a
our current implementation keeps the metadata in a sepafg{seal cache hos_ted on an ext3 paf““‘)” large enough to store
file much like a named attribute. The file is stored in a hidde";hcomIOIete replica of the shared filesystem.

well-known directory with the name of the file being the girin In th_e following experiment;, we compare cacis, .in which
representation of it&/lobal Fid we point the benchmark application to the C2Cfs filesystem

root, and the baseline scenario, in which client applicetio
C. Client-to-client Data Movement are configured to access the shared filesystem directly from
the server via the NFS mount point. Unless stated otherwise,
all NFS readwrite requests are sent on the wire in 32KB
chunks and application 1/0 request size is 256KB.

®Hue to space constraints, we present only key evaluation

To revalidate a cached copy of a fijg a client retrieves
fTeommse and f.CV Map from the server. It consults the
validity map to determine the list of peer locations from @i
a valid copy off can be fetched.

Client-client mount: The CV Map may only represent a
numerical client identifieclient_id, in which case we need One of the benefits of sharing data across caches is that
an external means of resolvingient_id into (hostname : the server will receive fewer requests and can scale to stippo
export_path) and currently, we maintain these mappings imore clients. We measure the server load reduction using two
a static configuration file. Given a peer client's hostnamg ametrics: i) the number of NFS operations received at theeserv
export path, the client mounts its C2Cfs export over NFS. Thand ii) the bytes transferred to and from the server.
mounting is done on demand, as we do not want all clients toln the first experiment, we measure sequential read access
be mounting from all their peers. to a file whose size ranges between 100KB and 100MB. Each

Lookup using filehandle as name To fetch an up-to-date client opens and reads the entire file, and then closes it. The
version of a filef from a remote peer, the client must perfornmeads are staggered among the clients with a 30-second delay

A. Server Load Reduction

% 16+06 Workload Seq. read Seq. read+write

£ /g;ﬁa;ggugi, Base | C2C || Base | Cc2C

2 ook CociiomB—a— Client 1 || 23.7 | 243 || 1974 198.8

2 Base, 1B Client2 || 235 | 10.3 || 198.0 | 194.7

g /ﬁ?e%w'g/l%f

2 10000 C2C_100KE —&— o _ TABLE | _ _

£ Application response time (seconds) for reading a 100-MB fil

= . . .

2 1000 B. Application Response Time

E] Masking WAN latency: In a typical enterprise with a

3 100 e e — " . .

= 1 2 3 a central-office branch-office setting, the server can bessceo
Clients WAN, while multiple peer clients in a branch office are in @os

Fig. 3. Overhead at the primary NFS server in the synthetic read proximity to each o'gher and have a better conn(_ectlwty a_mong
experiment. The X-axis shows the number of clients doing a aggered themselves than with the remote server. In this experiment,
read. The y-axis (in log scale) shows the number of NFS opeiahs and e measure application response time in a scenario where
the total bytes sent and received by the server.
30000 e : the server is separated from clients by a wide-area link.
ase, pnmary servef—— .
250001 C2C. primary server—— We demonstrate that our architecture can help mask WAN
TR — latencies and improve application performance. To simsulat
€26 clent the link latency, we use the standard Linexpacket filter and
configure it to impose a mean latency of 100 ms (which is
what we had observed as the round-trip-time between servers
5000 n in California and New York). We measure the application
/ /—-—-?..w response time for two synthetic workloads (sequential szatl
0
o 20 40 60 8 100 120 sequential read/write) on a single file of size 100MB from 4
Time (seconds) clients and Table | reports the response time for both schkeme
Fig. 4. Distribution of reads across clients in the synthetic read FOr s.eque-ntlal read access, C2Cfs incurs a 2.5% overhead for
experiment. The x-axis shows time in seconds (client requssare the first client, but reduces the response time by 50% for the

staggered by 30 seconds). The y-axis shows the cumulativember of gacong client and for all clients that follow. In the seqiggnt
NFS operations at the server and each of the clients.

In the baseline case, every client reads the file from tfg2d/write experiment, the response time is dominated &y th
server and thus, the number of NFS operations at the serVéjtes to the server and thus the two schemes exhibit similar
grows linearly with the number of clients, as reported in [gPerformance. o o
With our scheme, only the first clients reads the data from theOverloaded server The application response time is also
server. The second client fetches it from the first clieneraft@ffected by the load on the server and the next experiment
getting the cache map from the server. Similarly, the thi,qlemqnst_rates the per_formance benefits of deceqtrallzdtecac
client reads from both the first and the second clients and yalidation of C2Cfs in case of an overloaded primary serve
on. Hence, the number of requests observed by the server Witrhis two-stage experiment, two distinct files, each oesiz
C2Cfs remain nearly constant, as only the first client fetchéCGB, are read sequentially by four clients. In the first stage
the file directly from the server. Note, however, that thigig Clients 1 and 2 readileA andfileB, respectively. Since both
only for files larger than 1MB because we pay an additionggads are handled by the ce_ntral server, e_ach cllent_rescelve
overhead to OPEN, LOCK, READ/WRITE, UNLOCK, andapproximately 1/2 of the available server-side bandwitith.
CLOSE the file holding the C2Cfs metadata. both schemes, all the requests go to the server and thus, we

Figure 3 measures the amount of data transferred to/from @serve similar performance. In the second stage, clieatsi3
server. The amount of traffic grows linearly with the numbét Perform concurrent reads diteA andfileB, respectively. In
of clients in the baseline case, but stays nearly flat whéi baseline scenario, these reads are handled by the server
collective caching is enabled. With 4 clients, C2Cfs reduc@S Well and hence observe similar performance as the first
servers network bandwidth usage by 75% for a 100MB fiidwo clients. By contrast, with C2Cfs clients 3 and 4 can fetch

In [8], we analyze the behavior further and consider tHBe file directly from clients 1 and 2 and avoid overloading
breakdown of NFS operations in this experiment. the server. With our architecture, these clients observé%a 4

Figure 4 shows a time-series plot illustrating the distiitou reduction in response time compared to the baseline cage. Th

of NFS requests across the clients and the central servire InCOMPplete set of measurements is reported in [8].
baseline case, the number of requests at the server insre%se
linearly with the number of clients. With collective cacin ~
the first client starts at time 0 and all its requests are sent t In the above experiments, we used synthetic workloads to
the server. After a 30-second delay, client 2 starts andsreayaluate C2Cfs in a controlled setting. We also used Filefven
the data from client 1 and the server sees only a margiri8] - a soon-to-be-standard filesystem benchmark filesystem
increase in the number of requests. After another 30-secdndstudy the performace under realistic application waakin
delay, client 3 accesses the file and fetches the data fronin the first experiment, we configure Filebench with a Web
clients 1 and 2, and so on. server workload. We first generate a directory tree contgini

20000+

15000 -

NFS Operations

10000+

Evaluation with Realistic Application Workloads

| File size | Baseline | C2C [overhead (%) |

that supports: i) close-to-open consistency, ii) persistaique

1 MB 0.094 sec.| 0.117 sec. 24.5% . op AT . .
10 MB || 0897 sec.| 0923 sec. 2 9% file identifiers, iii) file locking or atomic creates.
100 MB || 8.937 sec.| 8.978 sec. 0.5% The advent of P2P file sharing ([12], [13]) and the immense
TABLE II research interest in DHT-based content location techsique
Latency overhead for a single-client sequential read. have led some to propose a fully-decentralized, serverless

5000 files with a mean file size of 100KB. The kaba@rchitecture as aviable.architectural modelforgenelngppse
consists of 5000 file accesses (open, sequential read,) cld4gsystems. CFS [14] is a peer-to-peer read-only filesystem
with a Zipfian popularity distribution. Additionally, a 168 that provides provable efficiency and load-balancing guara
block is appended to a simulated log for every 10 reads. @S- Internally, CFS uses a DHT-based block storage layer
run the workload on each of the four clients and measure th@sed on Chord [15] to distribute filesystem blocks over a set
total network bandwidth consumption at the server (bytes s@f storage servers. The Ivy architecture [4] is a read-W#Re
and received). Each client starts out with an empty cache dfl§System that provides NFS semantics and strong integrity
begins when the previous client has completed. Each clidtipPerties without requiring users to fully trust other nsse
reads 5000 randomly-chosen files (different clients maysho Of the filesystem. vy relies on cryptographic techniques to
different files). In the baseline case, all requests go tortim Protect the data and hence incurs a substantial performance
server, whereas with C2Cfs, client 2 redirects a fractioitsof Penalty. In contrast, application performance represémes
requests to client 1; client 3 redirects to 1 and 2, and so diimary focus of our work. The PRACTI replication frame-
For the first client, the baseline scheme produces 169MB \prk [16] illustrates the benefits of separating the flow of
traffic at the server, compared to 189MB produced with c2cfeache invalidation traffic from that of data itself and C2Cfs
For each subsequent client, however, our design reduces ggaonstrates how such separation can be realized within the
network bandwidth usage at the server to 19MB. Full resu@nfines of NFS. The Shark cooperative file cache architectur

from this and other experiments can be found in [8]. [6] has similar goals as C2Cfs. However, it does not provide
close-to-open consistency guarantees and does not swgport
D. Overhead of C2Cfs unmodified NFS server and protocol - an important consider-

. . . . ation for commercial deployments.
Clearly, for a single-client access with no sharing across

clients, C2Cfs provides no benefit and imposes some addi- REFERENCES
tlongl overhead_, which includes: i) The space overhead q{] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. iBea
storing the per-file metadatd’.o . mi:, CV Map) at the server. M. Eisler, and D. Noveck, “NFS version 4 Protocol,” RFC 3530.

Our current implementation adds 8 bytes of per-file state - [Online]. Available: http://www.ietf.org/rfc/rfc3536t . .
.. . . [2] J. Howard and et al., “An overview of the Andrew filesystém Usenix
a negligible overhead for all but very small files. i) The ™ \yiiter Techinal Conferencass.

server load overhead due to the additional operations doi@ T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Rasaiid R. Wang,
at the server for cache revalidation. Here, we also pay a nopy “Serverless Network File Systems,” BOSP 1995

.. . A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen, “lvyA
negligible penalty for small files [8]. iii) The latency ovezad read/write peer-to-peer file system,” BOSP 2002

incurred by the revalidation protocol due to the additiditae [5] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. &at D. Geels,

taken to access the C2Cfs metadata at the server. R. Gummadi, S. Rhea, H. Weatherspoon, C. Wells, and B. Zhao,

. “Oceanstore: an architecture for global-scale persisttntage,” in
To quantify the latency overhead, we measure the response asp|os-1x2000. g P 9

time seen by a single client that sequentially reads a filg] S. Annapureddy, M. J. Freedman, and D. Mazires, “Shadalifg file

idi i servers via cooperative caching,” MSDI 2005
residing at th_e ceqtral server. The server is across a 10§MbB] Y. Xu and B. . Fleisch. "NES-cc, tuning NFS for concurteread
LAN connection with no simulated delay. Table Il reports the * gharing”int. J. High Perform. Comput. Netwol. 1, no. 4.

client-observed response time. As expected the overhdlad fa8] A. Ermolinskiy and R. Tewari, “C2Cfs: A collective caety architecture

from 24% for the 1MB file to 0.5% for a 100MB file. While for distributed file access{UC Berkeley Technical Report UCB/EECS-
’ ’ 2009-40

clearly non-trivial, in scenarios with large files and mpil# 9] R McDougall, J. Crase, and S. Debnath, ‘FileBench:
clients that were examined above, this overhead is masked by File System Microbenchmarks,” 2006. [Online]. Available:
; ; ; http://www.opensolaris.org/os/community/performdfiebench/
the benefits of a collective consistent cache. [10] J. H. Howard, M. L. Kazar, S. G. Meness. D. A. Nichols, Mat@:
narayanan, R. N. Sidebotham, and M. J. West, “Scale andrpaafce
VI. RELATED WORK in a distributed file system ACM Trans. Comput. Syswol. 6, no. 1.
. [11] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. OkadakH. Siegel,
NFS [1] and AFS [2], [10] are among the most widely- ~ and D. C. Steere, “Coda: A highly available file system for stritiuted
used distributed networked filesystems. Coda [11] extelmels t _ workstation environmentIEEE Trans. Comp.vol. 39, no. 4.

. .] “Bittorrent,” http://www.bittorrent.com.
core architecture of AFS to support server replication anfh; «aaa" hitp:/iwww.kazaa.com.

disconnected mode of operation. As with most “pure” clienfi4] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and 1.iGtp“Wide-
server architectures, the flow of data and cache invalidatio] area ,Coopsfa;/'lve ,Stogﬂgz with Cl\ﬁséfﬂ}?sph?o?(l o Hidaish

. . . - . Oica, R. Morris, D. Karger, . k. Kaashoek, an | shnan,
reque_StS m_thes_e syste_ms IS Con_Stra!ned to a St_ar to_polmlgy “Chord: A scalable peer-to-peer lookup service for inteaygplications,”
very little direct inter-client coordination. While in thipaper, in SIGCOMM 2001
our implementation was presented in the context of NFSV46] N. Belaramani, M. Dahlin, L. Gao, A. Nayate, A. Venkatamani,

) . P. Yalagandula, and J. Zheng, “PRACTI replication;NSDI 2006
the C2Cfs architecture can leverage any client-serveopobt #lagandiia. an eng repication

